Two-scale coupling for preconditioned Hamiltonian Monte Carlo in infinite dimensions
We derive non-asymptotic quantitative bounds for convergence to equilibrium of the exact preconditioned Hamiltonian Monte Carlo algorithm (pHMC) on a Hilbert space. As a consequence, explicit and dimension-free bounds for pHMC applied to high-dimensional distributions arising in transition path samp...
Gespeichert in:
Veröffentlicht in: | Stochastic partial differential equations : analysis and computations 2021-03, Vol.9 (1), p.207-242 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We derive non-asymptotic quantitative bounds for convergence to equilibrium of the exact preconditioned Hamiltonian Monte Carlo algorithm (pHMC) on a Hilbert space. As a consequence, explicit and dimension-free bounds for pHMC applied to high-dimensional distributions arising in transition path sampling and path integral molecular dynamics are given. Global convexity of the underlying potential energies is not required. Our results are based on a two-scale coupling which is contractive in a carefully designed distance. |
---|---|
ISSN: | 2194-0401 2194-041X |
DOI: | 10.1007/s40072-020-00175-6 |