NSE characterization of the Chevalley group G2(4)
Let G be a group and ω ( G ) = { o ( g ) | g ∈ G } be the set of element orders of G . Let k ∈ ω ( G ) and s k = | { g ∈ G | o ( g ) = k } | . Let n s e ( G ) = { s k | k ∈ ω ( G ) } . In this paper, we prove that if G is a group and G 2 ( 4 ) is the Chevalley group such that n s e ( G ) = n s e ( G...
Gespeichert in:
Veröffentlicht in: | Arabian journal of mathematics 2018-03, Vol.7 (1), p.21-26 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
G
be a group and
ω
(
G
)
=
{
o
(
g
)
|
g
∈
G
}
be the set of element orders of
G
. Let
k
∈
ω
(
G
)
and
s
k
=
|
{
g
∈
G
|
o
(
g
)
=
k
}
|
. Let
n
s
e
(
G
)
=
{
s
k
|
k
∈
ω
(
G
)
}
. In this paper, we prove that if
G
is a group and
G
2
(
4
)
is the Chevalley group such that
n
s
e
(
G
)
=
n
s
e
(
G
2
(
4
)
)
, then
G
≅
G
2
(
4
)
. |
---|---|
ISSN: | 2193-5343 2193-5351 |
DOI: | 10.1007/s40065-017-0182-4 |