The effect of cell-attachment on the group of self-equivalences of an R-localized space
Let R ⊆ Q be a ring with least non-invertible prime p . Let X = X n ∪ α ( ⋃ j ∈ J e q ) be a cell attachment with J finite and q small with respect to p . Let E ( X R ) denote the group of homotopy self-equivalences of the R -localization X R . We use DG Lie models to construct a short exact sequenc...
Gespeichert in:
Veröffentlicht in: | Journal of homotopy and related structures 2015, Vol.10 (3), p.549-564 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
R
⊆
Q
be a ring with least non-invertible prime
p
. Let
X
=
X
n
∪
α
(
⋃
j
∈
J
e
q
)
be a cell attachment with
J
finite and
q
small with respect to
p
. Let
E
(
X
R
)
denote the group of homotopy self-equivalences of the
R
-localization
X
R
. We use DG Lie models to construct a short exact sequence
0
→
⨁
j
∈
J
π
q
(
X
n
)
R
→
E
(
X
R
)
→
C
q
→
0
where
C
q
is a subgroup of
GL
|
J
|
(
R
)
×
E
(
X
R
n
)
. We obtain a related result for the
R
-localization of the nilpotent group
E
∗
(
X
)
of classes inducing the identity on homology. We deduce some explicit calculations of both groups for spaces with few cells. |
---|---|
ISSN: | 2193-8407 1512-2891 |
DOI: | 10.1007/s40062-014-0076-5 |