On generalized K-functionals in Lp for 0<p<1

We show that the Peetre K -functional between the space L p with 0 < p < 1 and the corresponding smooth function space W p ψ generated by the Weyl-type differential operator ψ ( D ) , where ψ is a homogeneous function of any positive order, is identically zero. The proof of the main results is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fractional calculus & applied analysis 2023-06, Vol.26 (3), p.1016-1030
Hauptverfasser: Kolomoitsev, Yurii, Lomako, Tetiana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that the Peetre K -functional between the space L p with 0 < p < 1 and the corresponding smooth function space W p ψ generated by the Weyl-type differential operator ψ ( D ) , where ψ is a homogeneous function of any positive order, is identically zero. The proof of the main results is based on the properties of the de la Vallée Poussin kernels and the quadrature formulas for trigonometric polynomials and entire functions of exponential type.
ISSN:1311-0454
1314-2224
DOI:10.1007/s13540-023-00160-5