The fractional variation and the precise representative of BVα,p functions
We continue the study of the fractional variation following the distributional approach developed in the previous works Bruè et al. (2021), Comi and Stefani (2019), Comi and Stefani (2019). We provide a general analysis of the distributional space B V α , p ( R n ) of L p functions, with p ∈ [ 1 , +...
Gespeichert in:
Veröffentlicht in: | Fractional calculus & applied analysis 2022-04, Vol.25 (2), p.520-558 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We continue the study of the fractional variation following the distributional approach developed in the previous works Bruè et al. (2021), Comi and Stefani (2019), Comi and Stefani (2019). We provide a general analysis of the distributional space
B
V
α
,
p
(
R
n
)
of
L
p
functions, with
p
∈
[
1
,
+
∞
]
, possessing finite fractional variation of order
α
∈
(
0
,
1
)
. Our two main results deal with the absolute continuity property of the fractional variation with respect to the Hausdorff measure and the existence of the precise representative of a
B
V
α
,
p
function. |
---|---|
ISSN: | 1311-0454 1314-2224 |
DOI: | 10.1007/s13540-022-00036-0 |