The fractional variation and the precise representative of BVα,p functions

We continue the study of the fractional variation following the distributional approach developed in the previous works Bruè et al. (2021), Comi and Stefani (2019), Comi and Stefani (2019). We provide a general analysis of the distributional space B V α , p ( R n ) of L p functions, with p ∈ [ 1 , +...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fractional calculus & applied analysis 2022-04, Vol.25 (2), p.520-558
Hauptverfasser: Comi, Giovanni E., Spector, Daniel, Stefani, Giorgio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We continue the study of the fractional variation following the distributional approach developed in the previous works Bruè et al. (2021), Comi and Stefani (2019), Comi and Stefani (2019). We provide a general analysis of the distributional space B V α , p ( R n ) of L p functions, with p ∈ [ 1 , + ∞ ] , possessing finite fractional variation of order α ∈ ( 0 , 1 ) . Our two main results deal with the absolute continuity property of the fractional variation with respect to the Hausdorff measure and the existence of the precise representative of a B V α , p function.
ISSN:1311-0454
1314-2224
DOI:10.1007/s13540-022-00036-0