On the Baer–Kaplansky theorem for injective modules: On the Baer–Kaplansky
In this paper, we study the Baer–Kaplansky theorem for injective modules. Firstly, we prove that every right semi-artinian local ring satisfies the Baer–Kaplansky theorem for injective modules. Later, we work on the commutative principal ideal domains. We prove that a commutative local principal ide...
Gespeichert in:
Veröffentlicht in: | Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas Físicas y Naturales. Serie A, Matemáticas, 2025, Vol.119 (1) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we study the Baer–Kaplansky theorem for injective modules. Firstly, we prove that every right semi-artinian local ring satisfies the Baer–Kaplansky theorem for injective modules. Later, we work on the commutative principal ideal domains. We prove that a commutative local principal ideal domain (i.e. discrete valuation ring) satisfies the Baer–Kaplansky theorem for completely virtually semisimple modules. Finally, we make examples on the upper triangular matrix ring
A
:
=
R
M
0
S
with nonzero
M
showing that the Baer–Kaplansky theorem fails for injective right
A
-modules, even if
R
and
S
are semisimple rings. We deduce that for every division ring
D
and
n
>
1
, the Baer–Kaplansky theorem fails for injective right modules over the ring
T
n
(
D
)
(upper triangular matrix ring over
D
). |
---|---|
ISSN: | 1578-7303 1579-1505 |
DOI: | 10.1007/s13398-024-01666-0 |