p-difference: a counterpart of Minkowski difference in the framework of the Lp-Brunn–Minkowski theory

As a substraction counterpart of the well-known p -sum of convex bodies, we introduce the notion of p -difference. We prove several properties of the p -difference, introducing also the notion of p -(inner) parallel bodies. We prove an analog of the concavity of the family of classical parallel bodi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas Físicas y Naturales. Serie A, Matemáticas, 2016-09, Vol.110 (2), p.613-631
Hauptverfasser: Martínez Fernández, A. R., Saorín Gómez, E., Yepes Nicolás, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As a substraction counterpart of the well-known p -sum of convex bodies, we introduce the notion of p -difference. We prove several properties of the p -difference, introducing also the notion of p -(inner) parallel bodies. We prove an analog of the concavity of the family of classical parallel bodies for the p -parallel ones, as well as the continuity of this new family, in its definition parameter. Further results on inner parallel bodies are extended to p -inner ones; for instance, we show that tangential bodies are characterized as the only convex bodies such that their p -inner parallel bodies are homothetic copies of them.
ISSN:1578-7303
1579-1505
DOI:10.1007/s13398-015-0253-3