On the number of generators of ideals defining Gorenstein Artin algebras with Hilbert function 1,n+1,1+n+12,…,n+12+1,n+1,1
Let R = k [ w , x 1 , … , x n ] / I be a graded Gorenstein Artin algebra. I = ann F for some F in the divided power algebra k [ W , X 1 , … , X n ] . Suppose that R I 2 is a height one ideal generated by n quadrics so that I 2 ⊂ ( w ) after a possible change of variables. Let J = I ∩ k [ x 1 , … , x...
Gespeichert in:
Veröffentlicht in: | Beiträge zur Algebra und Geometrie 2016, Vol.57 (1), p.173-187 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
R
=
k
[
w
,
x
1
,
…
,
x
n
]
/
I
be a graded Gorenstein Artin algebra.
I
=
ann
F
for some
F
in the divided power algebra
k
[
W
,
X
1
,
…
,
X
n
]
. Suppose that
R
I
2
is a height one ideal generated by
n
quadrics so that
I
2
⊂
(
w
)
after a possible change of variables. Let
J
=
I
∩
k
[
x
1
,
…
,
x
n
]
. Then
μ
(
I
)
≤
μ
(
J
)
+
n
+
1
and
I
is said to be
μ
-generic if
μ
(
I
)
=
μ
(
J
)
+
n
+
1
. In this article we prove necessary conditions, in terms of
F
, for an ideal to be
μ
-generic. With some extra assumptions on the exponents of terms of
F
, we obtain a characterization for height four ideals
I
to be
μ
-generic. |
---|---|
ISSN: | 0138-4821 2191-0383 |
DOI: | 10.1007/s13366-014-0228-0 |