Design of active and stable oxygen reduction reaction catalysts by embedding CoxOy nanoparticles into nitrogen-doped carbon

The oxygen reduction reaction (ORR) is essential in research pertaining to life science and energy. In applications, platinum-based catalysts give ideal reactivity, but, in practice, are often subject to high costs and poor stability. Some cost-efficient transition metal oxides have exhibited excell...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano research 2017, Vol.10 (1), p.97-107
Hauptverfasser: Yang, Fan, Abadia, Mikel, Chen, Chaoqiu, Wang, Weike, Li, Le, Zhang, Lianbing, Rogero, Celia, Chuvilin, Andrey, Knez, Mato
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The oxygen reduction reaction (ORR) is essential in research pertaining to life science and energy. In applications, platinum-based catalysts give ideal reactivity, but, in practice, are often subject to high costs and poor stability. Some cost-efficient transition metal oxides have exhibited excellent ORR reactivity, but the stability and durability of such alternative catalyst materials pose serious challenges. Here, we present a facile method to fabricate uniform Co x O y nanoparticles and embed them into N-doped carbon, which results in a composite of extraordinary stability and durability, while maintaining its high reactivity. The half-wave potential shows a negative shift of only 21 mV after 10,000 cycles, only one third of that observed for Pt/C (63 mV). Furthermore, after 100,000 s testing at a constant potential, the current decreases by only 17%, significantly less than for Pt/C (35%). The exceptional stability and durability results from the system architecture, which comprises a thin carbon shell that prevents agglomeration of the Co x O y nanoparticles and their detaching from the substrate.
ISSN:1998-0124
1998-0000
DOI:10.1007/s12274-016-1269-5