Covering Lp Spaces by Balls
We prove that, given any covering of any separable infinite-dimensional uniformly rotund and uniformly smooth Banach space X by closed balls each of positive radius, some point exists in X which belongs to infinitely many balls.
Gespeichert in:
Veröffentlicht in: | The Journal of geometric analysis 2014, Vol.24 (4), p.1891-1897 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove that, given any covering of any separable infinite-dimensional uniformly rotund and uniformly smooth Banach space
X
by closed balls each of positive radius, some point exists in
X
which belongs to infinitely many balls. |
---|---|
ISSN: | 1050-6926 1559-002X |
DOI: | 10.1007/s12220-013-9400-2 |