Amphiphilically modified self-stratified siloxane-glycidyl carbamate coatings for anti-icing applications
Icephobic coatings have applications in many industries to protect surfaces from deterioration and avoid catastrophic incidents. In this work, we report a new strategy to prepare amphiphilic siloxane-glycidyl carbamate coatings (AmpSiGC) coatings with anti-icing property. Polydimethyl siloxane (PDMS...
Gespeichert in:
Veröffentlicht in: | JCT research 2021, Vol.18 (1), p.83-97 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Icephobic coatings have applications in many industries to protect surfaces from deterioration and avoid catastrophic incidents. In this work, we report a new strategy to prepare amphiphilic siloxane-glycidyl carbamate coatings (AmpSiGC) coatings with anti-icing property. Polydimethyl siloxane (PDMS) and poly(ethylene glycol) (PEG) provided amphiphilicity for the AmpSiGC coatings. The designed experiment considered several factors: molecular weight of the surface-modifying polymers and their amount in the coating system. Although amphiphilic coatings have demonstrated promising results as marine coatings, investigations on their icephobic applications have been limited. This work discusses three aspects of the developed AmpSiGC systems: (1) preparation of the incorporated ingredients and their characterization by Fourier transform infrared spectroscopy (FTIR); (2) surface characterization of coatings via ATR (attenuated total reflectance)-FTIR, X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM); and (3) ice-adhesion, electrochemical impedance spectroscopy (EIS), and mechanical property evaluations. Overall, the surface analysis indicated the presence of both hydrophobic and hydrophilic domains and most of the coatings demonstrated promising performance for anti-icing applications with desirable barrier and mechanical properties in comparison to controls. |
---|---|
ISSN: | 1547-0091 1935-3804 2168-8028 |
DOI: | 10.1007/s11998-020-00402-8 |