Turán numbers for Ks,t-free graphs: Topological obstructions and algebraic constructions

We show that every hypersurface in ℝ s × ℝ s contains a large grid, i.e., the set of the form S × T , with S, T ⊂ ℝ s . We use this to deduce that the known constructions of extremal K 2,2 -free and K 3,3 -free graphs cannot be generalized to a similar construction of K s,s -free graphs for any s ≥...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Israel journal of mathematics 2013-10, Vol.197 (1), p.199-214
Hauptverfasser: Blagojević, Pavle V. M., Bukh, Boris, Karasev, Roman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that every hypersurface in ℝ s × ℝ s contains a large grid, i.e., the set of the form S × T , with S, T ⊂ ℝ s . We use this to deduce that the known constructions of extremal K 2,2 -free and K 3,3 -free graphs cannot be generalized to a similar construction of K s,s -free graphs for any s ≥ 4. We also give new constructions of extremal K s,t -free graphs for large t .
ISSN:0021-2172
1565-8511
DOI:10.1007/s11856-012-0184-z