Turán numbers for Ks,t-free graphs: Topological obstructions and algebraic constructions
We show that every hypersurface in ℝ s × ℝ s contains a large grid, i.e., the set of the form S × T , with S, T ⊂ ℝ s . We use this to deduce that the known constructions of extremal K 2,2 -free and K 3,3 -free graphs cannot be generalized to a similar construction of K s,s -free graphs for any s ≥...
Gespeichert in:
Veröffentlicht in: | Israel journal of mathematics 2013-10, Vol.197 (1), p.199-214 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that every hypersurface in ℝ
s
× ℝ
s
contains a large grid, i.e., the set of the form
S
×
T
, with
S, T
⊂ ℝ
s
. We use this to deduce that the known constructions of extremal
K
2,2
-free and
K
3,3
-free graphs cannot be generalized to a similar construction of
K
s,s
-free graphs for any
s
≥ 4. We also give new constructions of extremal
K
s,t
-free graphs for large
t
. |
---|---|
ISSN: | 0021-2172 1565-8511 |
DOI: | 10.1007/s11856-012-0184-z |