Antimagic Labeling of the Lexicographic Product Graph Km,n[Pk]
A labeling f of a graph G is a bijection from its edge set E ( G ) to the set { 1 , 2 , … , | E ( G ) | } , which is antimagic if the vertex-sums are pairwise distinct, where the vertex-sum at one vertex is the sum of labels of all edges incident to such vertex. A graph is called antimagic if it adm...
Gespeichert in:
Veröffentlicht in: | Mathematics in computer science 2018-03, Vol.12 (1), p.77-90 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A labeling
f
of a graph
G
is a bijection from its edge set
E
(
G
) to the set
{
1
,
2
,
…
,
|
E
(
G
)
|
}
, which is antimagic if the vertex-sums are pairwise distinct, where the vertex-sum at one vertex is the sum of labels of all edges incident to such vertex. A graph is called antimagic if it admits an antimagic labeling
f
. In this paper, we show that the graph
K
m
,
n
[
P
k
]
, which is the lexicographic product of the complete bipartite graph
K
m
,
n
and path
P
k
, is antimagic. |
---|---|
ISSN: | 1661-8270 1661-8289 |
DOI: | 10.1007/s11786-017-0327-z |