Antimagic Labeling of the Lexicographic Product Graph Km,n[Pk]

A labeling f of a graph G is a bijection from its edge set E ( G ) to the set { 1 , 2 , … , | E ( G ) | } , which is antimagic if the vertex-sums are pairwise distinct, where the vertex-sum at one vertex is the sum of labels of all edges incident to such vertex. A graph is called antimagic if it adm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics in computer science 2018-03, Vol.12 (1), p.77-90
Hauptverfasser: Lu, Yingyu, Dong, Guanghua, Ma, Wenhui, Wang, Ning
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A labeling f of a graph G is a bijection from its edge set E ( G ) to the set { 1 , 2 , … , | E ( G ) | } , which is antimagic if the vertex-sums are pairwise distinct, where the vertex-sum at one vertex is the sum of labels of all edges incident to such vertex. A graph is called antimagic if it admits an antimagic labeling f . In this paper, we show that the graph K m , n [ P k ] , which is the lexicographic product of the complete bipartite graph K m , n and path P k , is antimagic.
ISSN:1661-8270
1661-8289
DOI:10.1007/s11786-017-0327-z