Generalized Hilbert Matrices Acting on Spaces that are Close to the Hardy Space H1 and to the Space BMOA

It is known that if X and Y are spaces of holomorphic functions in the unit disc D , which are between the mean Lipschitz space Λ 1 / p p , where 1 < p < ∞ , and the Bloch space B , then the generalized Hilbert matrix H μ , induced by a positive Borel measure μ on the interval [0, 1), is a bou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Complex analysis and operator theory 2019-07, Vol.13 (5), p.2357-2370
Hauptverfasser: Jevtić, Miroljub, Karapetrović, Boban
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is known that if X and Y are spaces of holomorphic functions in the unit disc D , which are between the mean Lipschitz space Λ 1 / p p , where 1 < p < ∞ , and the Bloch space B , then the generalized Hilbert matrix H μ , induced by a positive Borel measure μ on the interval [0, 1), is a bounded operator from the space X into the space Y if and only if μ is a 1-logarithmic 1-Carleson measure. We improve this result by proving that the same conclusion holds if we replace the space Λ 1 / p p , 1 < p < ∞ , by the space Λ 1 1 . Also we prove that the same conclusion holds if X and Y are spaces of holomorphic functions in D , which are between the Besov space B 1 , 1 and the mixed norm space H ∞ , 1 , 1 . As immediate consequences, we obtain many results and some of them are new.
ISSN:1661-8254
1661-8262
DOI:10.1007/s11785-019-00892-4