A unified analysis of convex and non-convex ℓp-ball projection problems

The task of projecting onto ℓ p norm balls is ubiquitous in statistics and machine learning, yet the availability of actionable algorithms for doing so is largely limited to the special cases of p ∈ 0 , 1 , 2 , ∞ . In this paper, we introduce novel, scalable methods for projecting onto the ℓ p -ball...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optimization letters 2023-06, Vol.17 (5), p.1133-1159
Hauptverfasser: Won, Joong-Ho, Lange, Kenneth, Xu, Jason
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The task of projecting onto ℓ p norm balls is ubiquitous in statistics and machine learning, yet the availability of actionable algorithms for doing so is largely limited to the special cases of p ∈ 0 , 1 , 2 , ∞ . In this paper, we introduce novel, scalable methods for projecting onto the ℓ p -ball for general p > 0 . For p ≥ 1 , we solve the univariate Lagrangian dual via a dual Newton method. We then carefully design a bisection approach for p < 1 , presenting theoretical and empirical evidence of zero or a small duality gap in the non-convex case. The success of our contributions is thoroughly assessed empirically, and applied to large-scale regularized multi-task learning and compressed sensing. The code implementing our methods is publicly available on Github.
ISSN:1862-4472
1862-4480
DOI:10.1007/s11590-022-01919-0