Catalyst-assisted growth of InGaN NWs for photoelectrochemical water-splitting applications
In this work, we have successfully grown InGaN nanowires by catalyst-assisted chemical vapour deposition technique with high aspect ratio for solar-driven water splitting applications. The band gap of the InGaN nanowires has been tuned to absorb a wide range of visible parts of electromagnetic spect...
Gespeichert in:
Veröffentlicht in: | Ionics 2020-07, Vol.26 (7), p.3465-3472 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work, we have successfully grown InGaN nanowires by catalyst-assisted chemical vapour deposition technique with high aspect ratio for solar-driven water splitting applications. The band gap of the InGaN nanowires has been tuned to absorb a wide range of visible parts of electromagnetic spectrum by optimizing the composition of In:Ga. The photoelectrochemical analysis has been carried out for InGaN nanowires and that evidences the significant solar oxygen evolution reaction with a small onset potential of 0.234 V vs. reversible hydrogen electrode. From the analysis, it has been witnessed the maximum applied bias to photo-conversion efficiency of ~ 1% at the applied bias of 0.63 V vs. reversible hydrogen electrode. Moreover, the ultra-long stability of InGaN nanowires has been evidenced by 3000 s with a flat current density of 0.43 mA/cm
2
in chronoamperometry analysis. |
---|---|
ISSN: | 0947-7047 1862-0760 |
DOI: | 10.1007/s11581-020-03488-7 |