Propagation of Epidemics Along Lines with Fast Diffusion
It has long been known that epidemics can travel along communication lines, such as roads. In the current COVID-19 epidemic, it has been observed that major roads have enhanced its propagation in Italy. We propose a new simple model of propagation of epidemics which exhibits this effect and allows f...
Gespeichert in:
Veröffentlicht in: | Bulletin of mathematical biology 2021-01, Vol.83 (1), p.2-2, Article 2 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It has long been known that epidemics can travel along communication lines, such as roads. In the current COVID-19 epidemic, it has been observed that major roads have enhanced its propagation in Italy. We propose a new simple model of propagation of epidemics which exhibits this effect and allows for a quantitative analysis. The model consists of a classical SIR model with diffusion, to which an additional compartment is added, formed by the infected individuals travelling on a line of fast diffusion. The line and the domain interact by constant exchanges of populations. A classical transformation allows us to reduce the proposed model to a system analogous to one we had previously introduced Berestycki et al. (J Math Biol 66:743–766, 2013) to describe the enhancement of biological invasions by lines of fast diffusion. We establish the existence of a minimal spreading speed, and we show that it may be quite large, even when the basic reproduction number
R
0
is close to 1. We also prove here further qualitative features of the final state, showing the influence of the line. |
---|---|
ISSN: | 0092-8240 1522-9602 |
DOI: | 10.1007/s11538-020-00826-8 |