Fast Discovery of an Extremely Radio-Faint Millisecond Pulsar from the Fermi-Lat Unassociated Source 3fgl J0318.1+0252
High sensitivity radio searches of unassociated γ-ray sources have proven to be an effective way of finding new pulsars. Using the Five-hundred-meter Aperture Spherical radio Telescope (FAST) during its commissioning phase, we have carried out a number of targeted deep searches of Fermi Large Area T...
Gespeichert in:
Veröffentlicht in: | Sci.China Phys.Mech.Astron 2021-12, Vol.64 (12), p.129562, Article 129562 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | High sensitivity radio searches of unassociated γ-ray sources have proven to be an effective way of finding new pulsars. Using the Five-hundred-meter Aperture Spherical radio Telescope (FAST) during its commissioning phase, we have carried out a number of targeted deep searches of Fermi Large Area Telescope (LAT) γ-ray sources. On February 27, 2018 we discovered an isolated millisecond pulsar (MSP), PSR J0318+0253, coincident with the unassociated γ-ray source 3FGL J0318.1+0252. PSR J0318+0253 has a spin period of 5.19 ms, a dispersion measure (DM) of 26 pc cm−3 corresponding to a DM distance of about 1.3 kpc, and a period-averaged flux density of (∼11±2) µJy at L-band (1.05–1.45 GHz). Among all high energy MSPs, PSR J0318+0253 is the faintest ever detected in radio bands, by a factor of at least ∼4 in terms of L-band fluxes. With the aid of the radio ephemeris, an analysis of 9.6 years of Fermi-LAT data revealed that PSR J0318+0253 also displays strong γ-ray pulsations. Follow-up observations carried out by both Arecibo and FAST suggest a likely spectral turn-over around 350 MHz. This is the first result from the collaboration between FAST and the Fermi-LAT teams as well as the first confirmed new MSP discovery by FAST, raising hopes for the detection of many more MSPs. Such discoveries will make a significant contribution to our understanding of the neutron star zoo while potentially contributing to the future detection of gravitational waves, via pulsar timing array (PTA) experiments. |
---|---|
ISSN: | 1674-7348 1869-1927 |
DOI: | 10.1007/s11433-021-1757-5 |