Existence of best simultaneous approximations in Lp(S,Σ,X) without the RNP assumption

Let ( S ,Σ, µ) be a complete positive σ -finite measure space and let X be a Banach space. We consider the simultaneous proximinality problem in L p ( S ,Σ, X ) for 1 ⩽ p < +∞. We establish some N -simultaneous proximinality results of L p ( S ,Σ 0 , Y ) in L p ( S ,Σ, X ) without the Radon-Nikod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Mathematics 2015, Vol.58 (4), p.813-820
Hauptverfasser: Luo, XianFa, Li, Chong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let ( S ,Σ, µ) be a complete positive σ -finite measure space and let X be a Banach space. We consider the simultaneous proximinality problem in L p ( S ,Σ, X ) for 1 ⩽ p < +∞. We establish some N -simultaneous proximinality results of L p ( S ,Σ 0 , Y ) in L p ( S ,Σ, X ) without the Radon-Nikodým property (RNP) assumptions on the space and its dual , where Σ 0 is a sub- σ -algebra of Σ and Y a nonempty locally weakly compact closed convex subset of X . In particular, we completely solve one open problem and partially solve another one in Luo et al. (2011).
ISSN:1674-7283
1869-1862
DOI:10.1007/s11425-014-4884-1