Fire Controlling Under Uncertainty in Urban Region Using Smart Vehicular Ad hoc Network

Every year thousands of urban and industrial fires occur, which leads to the destruction of infrastructure, buildings, and loss of lives. One of the reasons behind this is the delayed transmission of information to the fire station and the nearer hospitals for ambulance service as the transmission o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wireless personal communications 2021-02, Vol.116 (3), p.2049-2069
Hauptverfasser: Senapati, Biswa Ranjan, Khilar, Pabitra Mohan, Swain, Rakesh Ranjan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Every year thousands of urban and industrial fires occur, which leads to the destruction of infrastructure, buildings, and loss of lives. One of the reasons behind this is the delayed transmission of information to the fire station and the nearer hospitals for ambulance service as the transmission of information is dependent on observer at the location where the fire is caught and cellular network. This paper proposed an automated routing protocol for the urban vehicular ad-hoc network to send the information from the location where the fire is caught to the nearest fire stations and hospitals with optimum service time. This transmission of information involves Road Side Unit (RSU) at the junction and the vehicles present in the transmission path. Selection of route to transmit faulty vehicle information from the RSU to the required faulty vehicle is based on a parameter called path value. The computation of path value is done by the attributes such as expected End To End (E2E) delay, the shortest distance to destination, the density of vehicle between the junctions, and attenuation. From the current junction, the selection of the next junction is based on minimum path value. The proposed routing protocol considers the performance parameters such as E2E delay, total service time (TST), number of network fragments or network gaps, number of hops, and attenuation for the propagation path for the evaluation of the proposed methodology. The proposed routing algorithm is implemented through OmNet++ and SUMO. Results obtained for the proposed routing protocol is compared with three existing VANET protocols (GSR, A-STAR, and ARP) in terms of End To End delay, number of hops, number of vehicular gaps, and Total Service Time (TST).
ISSN:0929-6212
1572-834X
DOI:10.1007/s11277-020-07779-0