Photodynamic inactivation with curcumin and silver nanoparticles hinders Pseudomonas aeruginosa planktonic and biofilm formation: evaluation of glutathione peroxidase activity and ROS production

Antibiotic-resistant bacteria result in high mortality in the world. Therefore, it is necessary to find new methods as alternative antibacterial agents that decline bacterial resistance and limit the spread of serious infectious bacterial diseases. Antimicrobial photodynamic therapy (aPDT) is a non-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:World journal of microbiology & biotechnology 2021-09, Vol.37 (9), p.149, Article 149
Hauptverfasser: Ghasemi, Mehrangiz, Khorsandi, Khatereh, Kianmehr, Zahra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Antibiotic-resistant bacteria result in high mortality in the world. Therefore, it is necessary to find new methods as alternative antibacterial agents that decline bacterial resistance and limit the spread of serious infectious bacterial diseases. Antimicrobial photodynamic therapy (aPDT) is a non-invasive strategy against antibiotic-resistant bacteria. aPDT contains the combination of non-toxic dyes with harmless visible light to create reactive oxygen species (ROS) that selectively lead to microbial cell death. Curcumin and silver nanoparticles (AgNPs) have antibacterial properties. In this study, the aPDT with curcumin plus AgNPs as photosensitizers on planktonic and biofilm forms of Pseudomonas aeruginosa was investigated. Also, the phototoxicity effect of curcumin and AgNPs on human fibroblast cells was studied. Finally, the ROS formation and the glutathione peroxidase (GPx) activity were evaluated. The results showed that the use of curcumin in combination with AgNPs then aPDT reduced the number of bacteria in planktonic and biofilm forms. Curcumin and AgNPs did not show any significant photocytotoxic effect against human normal fibroblast. Finally, the GPx activity was decreased in presence of curcumin in combination with AgNPs then aPDT compared to control. The ROS production in curcumin plus AgNPs then aPDT was higher than the control group. Therefore, curcumin-aPDT plus AgNPs could be suggested as novel strategies in treating multi-drug-resistant bacteria such as P. aeruginosa .
ISSN:0959-3993
1573-0972
DOI:10.1007/s11274-021-03104-4