Deep Insights into Convolutional Networks for Video Recognition

As the success of deep models has led to their deployment in all areas of computer vision, it is increasingly important to understand how these representations work and what they are capturing. In this paper, we shed light on deep spatiotemporal representations by visualizing the internal representa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of computer vision 2020-02, Vol.128 (2), p.420-437
Hauptverfasser: Feichtenhofer, Christoph, Pinz, Axel, Wildes, Richard P., Zisserman, Andrew
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As the success of deep models has led to their deployment in all areas of computer vision, it is increasingly important to understand how these representations work and what they are capturing. In this paper, we shed light on deep spatiotemporal representations by visualizing the internal representation of models that have been trained to recognize actions in video. We visualize multiple two-stream architectures to show that local detectors for appearance and motion objects arise to form distributed representations for recognizing human actions. Key observations include the following. First, cross-stream fusion enables the learning of true spatiotemporal features rather than simply separate appearance and motion features. Second, the networks can learn local representations that are highly class specific, but also generic representations that can serve a range of classes. Third, throughout the hierarchy of the network, features become more abstract and show increasing invariance to aspects of the data that are unimportant to desired distinctions (e.g. motion patterns across various speeds). Fourth, visualizations can be used not only to shed light on learned representations, but also to reveal idiosyncrasies of training data and to explain failure cases of the system.
ISSN:0920-5691
1573-1405
DOI:10.1007/s11263-019-01225-w