Tribological Properties of Polytetrafluoroethylene Improved by Incorporation of Fluorinated Graphene with Various Fluorine/Carbon Ratios Under Dry Sliding Condition
Fluorinated graphene (FG) with various fluorine/carbon (F/C) ratios and graphene (G) employed as additions were incorporated into the polytetrafluoroethylene (PTFE) matrix aiming to improve the tribological properties of this self-lubricating polymer. The friction coefficients and wear rates of PTFE...
Gespeichert in:
Veröffentlicht in: | Tribology letters 2021-03, Vol.69 (1), Article 21 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Fluorinated graphene (FG) with various fluorine/carbon (F/C) ratios and graphene (G) employed as additions were incorporated into the polytetrafluoroethylene (PTFE) matrix aiming to improve the tribological properties of this self-lubricating polymer. The friction coefficients and wear rates of PTFE-based composites were tested under dry sliding condition using a ball-on-disc configuration. The performances of self-lubricity and wear resistance for four fabricated FG/PTFE composites were superior to those of G/PTFE composite, attributable to the specific surface area and chemical composition of FG sheets with various F/C ratios. Among them, the FG/PTFE composite with filler (F/C ≈ 0.5) loading of 5 wt% exhibited the best tribological property, i.e., the lowest friction coefficient (0.131) and the smallest steady-state wear rate (9.20 × 10
–16
m
3
/Nm). This can be attributed to the formation of uniform and complete transfer film on the friction interface via the tribochemical reactions.
Graphic Abstract |
---|---|
ISSN: | 1023-8883 1573-2711 |
DOI: | 10.1007/s11249-020-01398-3 |