The Dynamic Evolution of Permeability in Compacting Carbonates: Phase Transition and Critical Points

Mechanical damage and resultant permeability evolution during compaction of highly porous reservoir rocks have strong implications on the extraction of mineral and energy resources. Laboratory Experiments can be performed to quantify this effect; however, the effect of size on these processes and th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transport in porous media 2020-12, Vol.135 (3), p.687-711
Hauptverfasser: Chen, Xiao, Regenauer-Lieb, Klaus, Lv, Adelina, Hu, Manman, Roshan, Hamid
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mechanical damage and resultant permeability evolution during compaction of highly porous reservoir rocks have strong implications on the extraction of mineral and energy resources. Laboratory Experiments can be performed to quantify this effect; however, the effect of size on these processes and the information they provide need to be evaluated before any conclusion can be drawn. As part of this study, conventional triaxial compression tests under different confining pressures were carried out on large samples (30 mm diameter and 60 mm length). These experiments were compared to the same setup for small samples with 12.7 mm diameter and 25.4 mm length which allowed monitoring of the pore structure changes through the use of an X-ray transparent triaxial cell at constant confining pressure. Both scales showed a similar mechanical response. The large-scale experiments were used to investigate the transition from brittle to ductile deformation, and the small-scale experiments allowed detailed investigation of the microstructural changes affecting the permeability evolution. The permeabilities of the specimens were continually measured during the triaxial loading at both scales. At defined increasing axial strain levels, the small sample was imaged using X-ray computed tomography (XRCT) and internal structural changes were mapped. A series of digital rock analysis techniques and Pore Network Modelling allowed accurate analysis of the evolution of the microstructure and its effect on permeability evolution using Pore Network Models. An XRCT-based, microstructurally enriched, continuum model successfully describes the permeability evolution measured during triaxial testing. Self-organized criticality of the propagating front of compaction was also shown by R 2 values > 0.95 for a double Pareto fractal scaling law. Both approaches, as well as the macroscale experiments, confirmed a phase change in permeability at ~ 5% axial strain which provided a solid basis for microstructurally enriched assessment of the dynamic permeability.
ISSN:0169-3913
1573-1634
DOI:10.1007/s11242-020-01493-y