Asymptotics of D(q)-pairs and triples via L-functions of Dirichlet characters: Asymptotics of D(q)-pairs and triples via L-functions

Let q be a non-zero integer. A D ( q )- m -tuple is a set of m distinct positive integers { a 1 , a 2 , ⋯ , a m } such that a i a j + q is a perfect square for all 1 ⩽ i < j ⩽ m . By counting integer solutions x ∈ [ 1 , b ] of congruences x 2 ≡ q ( mod b ) with b ⩽ N , we count D ( q )-pairs with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Ramanujan journal 2025, Vol.66 (1)
Hauptverfasser: Adžaga, Nikola, Dražić, Goran, Dujella, Andrej, Pethő, Attila
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let q be a non-zero integer. A D ( q )- m -tuple is a set of m distinct positive integers { a 1 , a 2 , ⋯ , a m } such that a i a j + q is a perfect square for all 1 ⩽ i < j ⩽ m . By counting integer solutions x ∈ [ 1 , b ] of congruences x 2 ≡ q ( mod b ) with b ⩽ N , we count D ( q )-pairs with both elements up to N ,  and give estimates on asymptotic behaviour. We show that for prime q , the number of such D ( q )-pairs and D ( q )-triples grows linearly with N . Up to a factor of 2, the slope of this linear function is the quotient of the value of the L -function of an appropriate Dirichlet character (usually a Kronecker symbol) and of ζ ( 2 ) .
ISSN:1382-4090
1572-9303
DOI:10.1007/s11139-024-00979-3