Asymptotics of D(q)-pairs and triples via L-functions of Dirichlet characters: Asymptotics of D(q)-pairs and triples via L-functions
Let q be a non-zero integer. A D ( q )- m -tuple is a set of m distinct positive integers { a 1 , a 2 , ⋯ , a m } such that a i a j + q is a perfect square for all 1 ⩽ i < j ⩽ m . By counting integer solutions x ∈ [ 1 , b ] of congruences x 2 ≡ q ( mod b ) with b ⩽ N , we count D ( q )-pairs with...
Gespeichert in:
Veröffentlicht in: | The Ramanujan journal 2025, Vol.66 (1) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
q
be a non-zero integer. A
D
(
q
)-
m
-tuple
is a set of
m
distinct positive integers
{
a
1
,
a
2
,
⋯
,
a
m
}
such that
a
i
a
j
+
q
is a perfect square for all
1
⩽
i
<
j
⩽
m
. By counting integer solutions
x
∈
[
1
,
b
]
of congruences
x
2
≡
q
(
mod
b
)
with
b
⩽
N
, we count
D
(
q
)-pairs with both elements up to
N
, and give estimates on asymptotic behaviour. We show that for prime
q
, the number of such
D
(
q
)-pairs and
D
(
q
)-triples grows linearly with
N
. Up to a factor of 2, the slope of this linear function is the quotient of the value of the
L
-function of an appropriate Dirichlet character (usually a Kronecker symbol) and of
ζ
(
2
)
. |
---|---|
ISSN: | 1382-4090 1572-9303 |
DOI: | 10.1007/s11139-024-00979-3 |