Diverse exact soliton solutions for three distinct equations with conformable derivatives via expa function technique
In this paper, the technique involving the e x p a function is employed to calculate analytical soliton solutions for three distinct equations: the (3+1)-dimensional mKdV–Zakharov–Kuznetsov equation, the KdV equation, and the (1+1)-dimensional Mikhailov Novikov–Wang integrable equation, which fracti...
Gespeichert in:
Veröffentlicht in: | Optical and quantum electronics 2024-04, Vol.56 (5) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, the technique involving the
e
x
p
a
function is employed to calculate analytical soliton solutions for three distinct equations: the (3+1)-dimensional mKdV–Zakharov–Kuznetsov equation, the KdV equation, and the (1+1)-dimensional Mikhailov Novikov–Wang integrable equation, which fractional-order in the sense of conformable derivatives. By selecting some parameter values, a diverse spectrum of soliton solutions is obtained, encompassing kink solitons, singular solitons, and periodic-singular solitons. The representation in physical terms enables the examination of authentic multispecies plasmas, plasma models, and frequency ranges. |
---|---|
ISSN: | 1572-817X |
DOI: | 10.1007/s11082-024-06518-0 |