Diverse exact soliton solutions for three distinct equations with conformable derivatives via expa function technique

In this paper, the technique involving the e x p a function is employed to calculate analytical soliton solutions for three distinct equations: the (3+1)-dimensional mKdV–Zakharov–Kuznetsov equation, the KdV equation, and the (1+1)-dimensional Mikhailov Novikov–Wang integrable equation, which fracti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optical and quantum electronics 2024-04, Vol.56 (5)
Hauptverfasser: Eslami, Mostafa, Matinfar, Mashallah, Asghari, Yasin, Rezazadeh, Hadi, Abduridha, Sajjad A. Jedi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, the technique involving the e x p a function is employed to calculate analytical soliton solutions for three distinct equations: the (3+1)-dimensional mKdV–Zakharov–Kuznetsov equation, the KdV equation, and the (1+1)-dimensional Mikhailov Novikov–Wang integrable equation, which fractional-order in the sense of conformable derivatives. By selecting some parameter values, a diverse spectrum of soliton solutions is obtained, encompassing kink solitons, singular solitons, and periodic-singular solitons. The representation in physical terms enables the examination of authentic multispecies plasmas, plasma models, and frequency ranges.
ISSN:1572-817X
DOI:10.1007/s11082-024-06518-0