Analysis of a mass-spring-relay system with periodic forcing

The dynamics of a hysteretic relay oscillator with harmonic forcing is investigated. Periodic excitation of the system results in periodic, quasi-periodic, chaotic and unbounded behavior. An explicit Poincaré map is constructed with an implicit constraint on the switching time. The stability of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear dynamics 2021-09, Vol.106 (1), p.21-44
Hauptverfasser: Lelkes, János, Kalmár-Nagy, Tamás
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The dynamics of a hysteretic relay oscillator with harmonic forcing is investigated. Periodic excitation of the system results in periodic, quasi-periodic, chaotic and unbounded behavior. An explicit Poincaré map is constructed with an implicit constraint on the switching time. The stability of the fixed points of the Poincaré map corresponding to period-one solutions is investigated. By varying the forcing parameters, we observed a saddle-center and a pitchfork bifurcation of two centers and a saddle-type fixed point. The global dynamics of the system exhibits discontinuity induced bifurcations of the fixed points.
ISSN:0924-090X
1573-269X
DOI:10.1007/s11071-021-06685-9