Computational limitations of affine automata and generalized affine automata
We present new results on the computational limitations of affine automata (AfAs). First, we show that using the endmarker does not increase the computational power of AfAs. Second, we show that the computation of bounded-error rational-valued AfAs can be simulated in logarithmic space. Third, we id...
Gespeichert in:
Veröffentlicht in: | Natural computing 2021-06, Vol.20 (2), p.259-270 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present new results on the computational limitations of affine automata (AfAs). First, we show that using the endmarker does not increase the computational power of AfAs. Second, we show that the computation of bounded-error rational-valued AfAs can be simulated in logarithmic space. Third, we identify some logspace unary languages that are not recognized by algebraic-valued AfAs. Fourth, we show that using arbitrary real-valued transition matrices and state vectors does not increase the computational power of AfAs in the unbounded-error model. When focusing only the rational values, we obtain the same result also for bounded error. As a consequence, we show that the class of bounded-error affine languages remains the same when the AfAs are restricted to use rational numbers only. |
---|---|
ISSN: | 1567-7818 1572-9796 |
DOI: | 10.1007/s11047-020-09815-1 |