Relaxed Modulus-Based Synchronous Multisplitting Multi-Parameter Methods for Linear Complementarity Problems

In 2013, Bai and Zhang (Numer Linear Algebra Appl, 20:425–439 2013 ) constructed modulus-based synchronous multisplitting iteration methods by an equivalent reformulation of the linear complementarity problem into a system of fixed-point equations and studied the convergence of them. In this paper,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mobile networks and applications 2021-04, Vol.26 (2), p.745-754
Hauptverfasser: Zhang, Li-Tao, Jiang, Ding-De, Zuo, Xian-Yu, Zhao, Ying-Chao, Zhang, Yi-Fan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In 2013, Bai and Zhang (Numer Linear Algebra Appl, 20:425–439 2013 ) constructed modulus-based synchronous multisplitting iteration methods by an equivalent reformulation of the linear complementarity problem into a system of fixed-point equations and studied the convergence of them. In this paper, we generalize Bai and Zhang’s method and study relaxed modulus-based synchronous multisplitting multi-parameter methods for linear complementarity problems. Furthermore, when the system matrix is an H + -matrix, we give convergence results for our new methods under weaker conditions than those in Bai and Zhang’s. Finally, numerical experiments are presented to illustrate the efficiency of the proposed methods.
ISSN:1383-469X
1572-8153
DOI:10.1007/s11036-019-01418-0