On k-resonance of grid graphs on the plane, torus and cylinder
Grid graphs on the plane, torus and cylinder are finite 2-connected bipartite graphs embedded on the plane, torus and cylinder, respectively, whose every interior face is bounded by a quadrangle. Let k be a positive integer, a grid graph is k -resonant if the deletion of any i ≤ k vertex-disjoint qu...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical chemistry 2014, Vol.52 (7), p.1807-1816 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Grid graphs on the plane, torus and cylinder are finite 2-connected bipartite graphs embedded on the plane, torus and cylinder, respectively, whose every interior face is bounded by a quadrangle. Let
k
be a positive integer, a grid graph is
k
-resonant if the deletion of any
i
≤
k
vertex-disjoint quadrangles from
G
results in a graph either having a perfect matching or being empty. If
G
is
k
-resonant for any integer
k
≥
1
, then it is called maximally resonant. In this study, we provide a complete characterization for the
k
-resonance of grid graphs
P
m
×
P
n
on plane,
C
m
×
C
n
on torus and
P
m
×
C
n
on cylinder. |
---|---|
ISSN: | 0259-9791 1572-8897 |
DOI: | 10.1007/s10910-014-0347-8 |