Isoperimetric regions in spherical cones and Yamabe constants of M × S1
We study isoperimetric regions on Riemannian manifolds of the form ( M n × (0, π ), sin 2 ( t ) g + dt 2 ) where g is a metric of positive Ricci curvature ≥ n − 1. When g is an Einstein metric we use this to compute the Yamabe constant of and so to obtain lower bounds for the Yamabe invariant of M...
Gespeichert in:
Veröffentlicht in: | Geometriae dedicata 2009, Vol.143 (1) |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study isoperimetric regions on Riemannian manifolds of the form (
M
n
× (0,
π
), sin
2
(
t
)
g
+
dt
2
) where
g
is a metric of positive Ricci curvature ≥
n
− 1. When
g
is an Einstein metric we use this to compute the Yamabe constant of
and so to obtain lower bounds for the Yamabe invariant of
M
×
S
1
. |
---|---|
ISSN: | 0046-5755 1572-9168 |
DOI: | 10.1007/s10711-009-9370-5 |