On the Diophantine equation x2 − kxy + y2 − 2n = 0
In this study, we determine when the Diophantine equation x 2 − kxy + y 2 −2 n = 0 has an infinite number of positive integer solutions x and y for 0 ⩽ n ⩽ 10. Moreover, we give all positive integer solutions of the same equation for 0 ⩽ n ⩽ 10 in terms of generalized Fibonacci sequence. Lastly, we...
Gespeichert in:
Veröffentlicht in: | Czechoslovak mathematical journal 2013, Vol.63 (3), p.783-797 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, we determine when the Diophantine equation
x
2
−
kxy
+
y
2
−2
n
= 0 has an infinite number of positive integer solutions
x
and
y
for 0 ⩽ n ⩽ 10. Moreover, we give all positive integer solutions of the same equation for 0 ⩽
n
⩽ 10 in terms of generalized Fibonacci sequence. Lastly, we formulate a conjecture related to the Diophantine equation
x
2
−
kxy
+
y
2
− 2
n
= 0. |
---|---|
ISSN: | 0011-4642 1572-9141 |
DOI: | 10.1007/s10587-013-0052-y |