On the Diophantine equation x2 − kxy + y2 − 2n = 0

In this study, we determine when the Diophantine equation x 2 − kxy + y 2 −2 n = 0 has an infinite number of positive integer solutions x and y for 0 ⩽ n ⩽ 10. Moreover, we give all positive integer solutions of the same equation for 0 ⩽ n ⩽ 10 in terms of generalized Fibonacci sequence. Lastly, we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Czechoslovak mathematical journal 2013, Vol.63 (3), p.783-797
Hauptverfasser: Keskin, Refik, Şiar, Zafer, Karaatli, Olcay
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, we determine when the Diophantine equation x 2 − kxy + y 2 −2 n = 0 has an infinite number of positive integer solutions x and y for 0 ⩽ n ⩽ 10. Moreover, we give all positive integer solutions of the same equation for 0 ⩽ n ⩽ 10 in terms of generalized Fibonacci sequence. Lastly, we formulate a conjecture related to the Diophantine equation x 2 − kxy + y 2 − 2 n = 0.
ISSN:0011-4642
1572-9141
DOI:10.1007/s10587-013-0052-y