Hopf Algebras of Type An, Twistings and the FRT-construction
We study pointed Hopf algebras of the form U ( R Q ), (Faddeev et al., Quantization of Lie groups and Lie algebras. Algebraic Analysis , vol. I, Academic, Boston, MA, pp. 129–139, 1988 ; Faddeev et al., Quantum groups. Braid group, knot theory and statistical mechanics. Adv. Ser. Math. Phys. , vol. ...
Gespeichert in:
Veröffentlicht in: | Algebras and representation theory 2008-03, Vol.11 (1) |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study pointed Hopf algebras of the form
U
(
R
Q
), (Faddeev et al., Quantization of Lie groups and Lie algebras.
Algebraic Analysis
, vol. I, Academic, Boston, MA, pp. 129–139,
1988
; Faddeev et al., Quantum groups. Braid group, knot theory and statistical mechanics.
Adv. Ser. Math. Phys.
, vol. 9, World Science, Teaneck, NJ, pp. 97–110,
1989
; Larson and Towber,
Commun. Algebra
19(12):3295–3345,
1991
), where
R
Q
is the Yang–Baxter operator associated with the multiparameter deformation of
GL
n
supplied in Artin et al. (
Commun. Pure Appl. Math.
44:8–9, 879–895,
1991
) and Sudbery (
J. Phys. A
, 23(15):697–704,
1990
). We show that
U
(
R
Q
) is of type
A
n
in the sense of Andruskiewitsch and Schneider (
Adv. Math.
154:1–45,
2000
; Pointed Hopf algebras.
Recent developments in Hopf Algebras Theory, MSRI Series
, Cambridge University Press, Cambridge,
2002
). We consider the non-negative part of
U
(
R
Q
) and show that for two sets of parameters, the corresponding Hopf sub-algebras can be obtained from each other by twisting the multiplication if and only if they possess the same groups of grouplike elements. We exhibit families of finite-dimensional Hopf algebras arising from
U
(
R
Q
) with non-isomorphic groups of grouplike elements. We then discuss the case when the quantum determinant is central in
A
(
R
Q
) and show that under some assumptions on the group of grouplike elements, two finite-dimensional Hopf algebras
U
(
R
Q
),
U
(
R
Q
′
) can be obtained from each other by twisting the comultiplication if and only if
In the last part we show that
U
Q
is always a quotient of a double crossproduct. |
---|---|
ISSN: | 1386-923X 1572-9079 |
DOI: | 10.1007/s10468-007-9079-9 |