Fire Safety Assessment of Epoxy Composites Reinforced by Carbon Fibre and Graphene

This paper presents a coupled numerical investigation to assess the reaction to fire performance and fire resistance of various types of epoxy resin (ER) based composites. It examines the fire response of carbon fibre (CF) reinforced ER (CF/ER), ER with graphene nanoplatelets (GNP/ER) and CF reinfor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied composite materials 2020-10, Vol.27 (5), p.619-639
Hauptverfasser: Zhang, Qiangjun, Wang, Yong C, Soutis, Constantinos, Bailey, Colin G., Hu, Yuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a coupled numerical investigation to assess the reaction to fire performance and fire resistance of various types of epoxy resin (ER) based composites. It examines the fire response of carbon fibre (CF) reinforced ER (CF/ER), ER with graphene nanoplatelets (GNP/ER) and CF reinforced GNP/ER (CF/GNP/ER). Thermal, physical and pyrolysis properties are presented to assist numerical modelling that is used to assess the material ability to pass the regulatory vertical burn test for new aircraft structures and estimate in-fire and post-fire residual strength properties. Except for the CF/GNP/ER composite, all other material systems fail the vertical burn test due to continuous burning after removal of the fire source. Carbon fibres are non-combustible and therefore reduce heat release rate of the ER composite. By combining this property with the beneficial barrier effects of graphene platelets, the CF/GNP/ER composite with 1.5 wt% GNP and 50 wt% CF self-extinguishes within 15 s after removal of the burner with a relatively small burn length. Graphene drastically slows down heat conduction and migration of decomposed volatiles to the surface by creating improved char structures. Thus, graphene is allowing the CF/GNP/ER composite panel to pass the regulatory vertical burn test. Due to low heat conduction and reduced heat release rate, the maximum temperatures in the CF/GNP/ER composite are low so the composite material retains very high in-fire and post-fire mechanical properties, maintaining structural integrity. In contrast, temperatures in the CF/ER composite are much higher. At a maximum temperature of 86 °C, the residual in-fire tensile and compressive mechanical strengths of CF/GNP/ER are about 87% and 59% respectively of the ambient temperature values, compared to 70% and 21% respectively for the CF/ER composite that has a temperature of 140 °C at the same time (but the CF/ER temperature will be higher due to continuing burning). Converting mass losses of the composites into char depth, the post-fire mechanical properties of the CF/GNP/ER composite are about 75% of the ambient condition compared to about 68% for the CF/ER composite.
ISSN:0929-189X
1573-4897
DOI:10.1007/s10443-020-09824-4