L1-Norm of Steinhaus chaos on the polydisc
Let J n ⊂ [ 1 , n ] , n = 1 , 2 , … be increasing sets of mutually coprime numbers. Under reasonable conditions on the coefficient sequence { c n j } n , j , we show that lim T → ∞ 1 T ∫ 0 T ∑ j ∈ J n c n j j i t d t ∼ π 2 ∑ j ∈ J n ( c n j ) 2 1 / 2 as n → ∞ . We also show by means of an elementary...
Gespeichert in:
Veröffentlicht in: | Monatshefte für Mathematik 2016, Vol.181 (2), p.473-483 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
J
n
⊂
[
1
,
n
]
,
n
=
1
,
2
,
…
be increasing sets of mutually coprime numbers. Under reasonable conditions on the coefficient sequence
{
c
n
j
}
n
,
j
, we show that
lim
T
→
∞
1
T
∫
0
T
∑
j
∈
J
n
c
n
j
j
i
t
d
t
∼
π
2
∑
j
∈
J
n
(
c
n
j
)
2
1
/
2
as
n
→
∞
. We also show by means of an elementary device that for all
0
<
α
<
2
,
lim
T
→
∞
1
T
∫
0
T
∑
n
=
1
N
n
-
i
t
α
d
t
1
/
α
≥
C
α
N
1
2
(
log
N
)
1
α
-
1
2
.
the proof uses Ayyad, Cochrane and Zheng estimate on the number of solutions of the equation
x
1
x
2
=
x
3
x
4
. In the case
α
=
1
, this approaches Helson’s bound up to a factor
(
log
N
)
1
/
4
. |
---|---|
ISSN: | 0026-9255 1436-5081 |
DOI: | 10.1007/s00605-015-0843-3 |