Pseudo-parallel surfaces of Scn×R and Hcn×R

In this work we give a characterization of pseudo-parallel surfaces in S c n × R and H c n × R , extending an analogous result by Asperti-Lobos-Mercuri for the pseudo-parallel case in space forms. Moreover, when n = 3 , we prove that any pseudo-parallel surface has flat normal bundle. We also give e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Boletim da Sociedade Brasileira de Matemática 2019-09, Vol.50 (3), p.705-715
Hauptverfasser: Lobos, G. A., Tassi, M. P., Hancco, A. J. Yucra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work we give a characterization of pseudo-parallel surfaces in S c n × R and H c n × R , extending an analogous result by Asperti-Lobos-Mercuri for the pseudo-parallel case in space forms. Moreover, when n = 3 , we prove that any pseudo-parallel surface has flat normal bundle. We also give examples of pseudo-parallel surfaces which are neither semi-parallel nor pseudo-parallel surfaces in a slice. Finally, when n ≥ 4 we give examples of pseudo-parallel surfaces with non vanishing normal curvature.
ISSN:1678-7544
1678-7714
DOI:10.1007/s00574-018-00126-9