Pseudo-parallel surfaces of Scn×R and Hcn×R
In this work we give a characterization of pseudo-parallel surfaces in S c n × R and H c n × R , extending an analogous result by Asperti-Lobos-Mercuri for the pseudo-parallel case in space forms. Moreover, when n = 3 , we prove that any pseudo-parallel surface has flat normal bundle. We also give e...
Gespeichert in:
Veröffentlicht in: | Boletim da Sociedade Brasileira de Matemática 2019-09, Vol.50 (3), p.705-715 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work we give a characterization of pseudo-parallel surfaces in
S
c
n
×
R
and
H
c
n
×
R
, extending an analogous result by Asperti-Lobos-Mercuri for the pseudo-parallel case in space forms. Moreover, when
n
=
3
, we prove that any pseudo-parallel surface has flat normal bundle. We also give examples of pseudo-parallel surfaces which are neither semi-parallel nor pseudo-parallel surfaces in a slice. Finally, when
n
≥
4
we give examples of pseudo-parallel surfaces with non vanishing normal curvature. |
---|---|
ISSN: | 1678-7544 1678-7714 |
DOI: | 10.1007/s00574-018-00126-9 |