Hopfield attractor-trusted neural network: an attack-resistant image encryption

The recent advancement in multimedia technology has undoubtedly made the transmission of objects of information efficiently. Interestingly, images are the prominent and frequent representations communicated across the defence, social, private and aerospace networks. Image ciphering or image encrypti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computing & applications 2020-08, Vol.32 (15), p.11477-11489
Hauptverfasser: Lakshmi, C., Thenmozhi, K., Rayappan, John Bosco Balaguru, Amirtharajan, Rengarajan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The recent advancement in multimedia technology has undoubtedly made the transmission of objects of information efficiently. Interestingly, images are the prominent and frequent representations communicated across the defence, social, private and aerospace networks. Image ciphering or image encryption is adopted as a secure medium of the confidential image. The utility of soft computing for encryption looks to offer an uncompromising impact in enhancing the metrics. Aligning with neural networks, a Hopfield attractor-based encryption scheme has proposed in this work. The parameter sensitivity, random similarity and learning ability have been instrumental in choosing this attractor for performing confusion and diffusion. The uniqueness of this scheme is the achievement of average entropy of 7.997, average correlation of 0.0047, average NPCR of 99.62 and UACI of 33.43 without using any other chaotic maps, thus proposing attack-resistant image encryption against attackable chaotic maps.
ISSN:0941-0643
1433-3058
DOI:10.1007/s00521-019-04637-4