A nullstellensatz for sequences over

Let p be a prime and let A = ( a 1 ,..., a ℓ ) be a sequence of nonzero elements in . In this paper, we study the set of all 0–1 solutions to the equation We prove that whenever ℓ ≥ p , this set actually characterizes A up to a nonzero multiplicative constant, which is no longer true for ℓ < p ....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Combinatorica (Budapest. 1981) 2014-12, Vol.34 (6), p.657-688
Hauptverfasser: Balandraud, Éric, Girard, Benjamin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let p be a prime and let A = ( a 1 ,..., a ℓ ) be a sequence of nonzero elements in . In this paper, we study the set of all 0–1 solutions to the equation We prove that whenever ℓ ≥ p , this set actually characterizes A up to a nonzero multiplicative constant, which is no longer true for ℓ < p . The critical case ℓ = p is of particular interest. In this context, we prove that whenever ℓ = p and A is nonconstant, the above equation has at least p −1 minimal 0–1 solutions, thus refining a theorem of Olson. The subcritical case ℓ = p −1 is studied in detail also. Our approach is algebraic in nature and relies on the Combinatorial Nullstellensatz as well as on a Vosper type theorem.
ISSN:0209-9683
1439-6912
DOI:10.1007/s00493-011-2961-4