Deep and high-efficiency removal of sulfate through a coupling system with sulfate-reducing and sulfur-oxidizing capacity under haloalkaliphilic condition
Sulfide from anaerobic treatment of high-sulfate wastewater would always have some adverse effects on downstream processes. In this study, a coupling anaerobic/aerobic system was developed and operated under haloalkaliphilic condition to realize deep and high-efficiency removal of sulfate without pr...
Gespeichert in:
Veröffentlicht in: | Bioprocess and biosystems engineering 2020-06, Vol.43 (6), p.1009-1015 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Sulfide from anaerobic treatment of high-sulfate wastewater would always have some adverse effects on downstream processes. In this study, a coupling anaerobic/aerobic system was developed and operated under haloalkaliphilic condition to realize deep and high-efficiency removal of sulfate without production of sulfide. A haloalkaliphilic sulfur-oxidizing strain,
Thioalkalivibrio versutus SOB306
, was responsible for oxidation of sulfide. The anaerobic part was first operated at optimum condition based on a previous study. Then, its effluent with an average sulfide concentration of 674 ± 33 mg·l
−1
was further directly treated by a set of 1 l biofilter with SOB306 strain under aerobic condition. Finally, 100% removal rate of sulfide was achieved at aeration rate of 0.75 l·l
−1
·min
−1
, ORP of − 392 mV and HRT of 4 h. The average yield of elemental sulfur reached 79.1 ± 1.3% in the filter, and the CROS achieved a conversion rate of sulfate to sulfur beyond 54%. This study for the first time revealed the characteristics and performance of the haloalkaliphilic CROS in deep treatment of high-sulfate wastewater, which paved the way for the development and application of this method in the real world. |
---|---|
ISSN: | 1615-7591 1615-7605 |
DOI: | 10.1007/s00449-020-02298-5 |