Linear-in-Δ lower bounds in the LOCAL model

By prior work, there is a distributed graph algorithm that finds a maximal fractional matching (maximal edge packing) in O ( Δ ) rounds, independently of n ; here Δ is the maximum degree of the graph and n is the number of nodes in the graph. We show that this is optimal: there is no distributed alg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Distributed computing 2017-10, Vol.30 (5), p.325-338
Hauptverfasser: Göös, Mika, Hirvonen, Juho, Suomela, Jukka
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:By prior work, there is a distributed graph algorithm that finds a maximal fractional matching (maximal edge packing) in O ( Δ ) rounds, independently of n ; here Δ is the maximum degree of the graph and n is the number of nodes in the graph. We show that this is optimal: there is no distributed algorithm that finds a maximal fractional matching in o ( Δ ) rounds, independently of  n . Our work gives the first linear-in- Δ lower bound for a natural graph problem in the standard LOCAL model of distributed computing—prior lower bounds for a wide range of graph problems have been at best logarithmic in Δ .
ISSN:0178-2770
1432-0452
DOI:10.1007/s00446-015-0245-8