Cycle Lengths of Hamiltonian Pℓ-free Graphs
For an integer ℓ at least three, we prove that every Hamiltonian P ℓ -free graph G on n > ℓ vertices has cycles of at least 2 ℓ n - 1 different lengths. For small values of ℓ , we can improve the bound as follows. If 4 ≤ ℓ ≤ 7 , then G has cycles of at least 1 2 n - 1 different lengths, and if ℓ...
Gespeichert in:
Veröffentlicht in: | Graphs and combinatorics 2014-11, Vol.31 (6), p.2335-2345 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For an integer
ℓ
at least three, we prove that every Hamiltonian
P
ℓ
-free graph
G
on
n
>
ℓ
vertices has cycles of at least
2
ℓ
n
-
1
different lengths. For small values of
ℓ
, we can improve the bound as follows. If
4
≤
ℓ
≤
7
, then
G
has cycles of at least
1
2
n
-
1
different lengths, and if
ℓ
is
4
or
5
and
n
is odd, then
G
has cycles of at least
n
-
ℓ
+
2
different lengths. |
---|---|
ISSN: | 0911-0119 1435-5914 |
DOI: | 10.1007/s00373-014-1494-1 |