Cycle Lengths of Hamiltonian Pℓ-free Graphs

For an integer ℓ at least three, we prove that every Hamiltonian P ℓ -free graph G on n > ℓ vertices has cycles of at least 2 ℓ n - 1 different lengths. For small values of ℓ , we can improve the bound as follows. If 4 ≤ ℓ ≤ 7 , then G has cycles of at least 1 2 n - 1 different lengths, and if ℓ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Graphs and combinatorics 2014-11, Vol.31 (6), p.2335-2345
Hauptverfasser: Meierling, Dirk, Rautenbach, Dieter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For an integer ℓ at least three, we prove that every Hamiltonian P ℓ -free graph G on n > ℓ vertices has cycles of at least 2 ℓ n - 1 different lengths. For small values of ℓ , we can improve the bound as follows. If 4 ≤ ℓ ≤ 7 , then G has cycles of at least 1 2 n - 1 different lengths, and if ℓ is 4 or 5 and n is odd, then G has cycles of at least n - ℓ + 2 different lengths.
ISSN:0911-0119
1435-5914
DOI:10.1007/s00373-014-1494-1