Efficient parameter estimation and variable selection in partial linear varying coefficient quantile regression model with longitudinal data

Efficient estimation and variable selection in partial linear varying coefficient quantile regression model with longitudinal data is concerned in this paper. To improve estimation efficiency in quantile regression, based on B-spline basis approximation for nonparametric parts, we propose a new esti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistical papers (Berlin, Germany) Germany), 2020-06, Vol.61 (3), p.967-995
Hauptverfasser: Wang, Kangning, Sun, Xiaofei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Efficient estimation and variable selection in partial linear varying coefficient quantile regression model with longitudinal data is concerned in this paper. To improve estimation efficiency in quantile regression, based on B-spline basis approximation for nonparametric parts, we propose a new estimating function, which can incorporate the correlation structure between repeated measures. In order to reduce computational burdens, the induced smoothing method is used. The new method is empirically shown to be much more efficient and robust than the popular generalized estimating equations based methods. Under mild conditions, the asymptotically normal distribution of the estimators for the parametric components and the optimal convergence rate of the estimators for the nonparametric functions are established. Furthermore, to do variable selection, a smooth-threshold estimating equation is proposed, which can use the correlation structure and select the nonparametric and parametric parts simultaneously. Theoretically, the variable selection procedure works beautifully, including consistency in variable selection and oracle property in estimation. Simulation studies and real data analysis are included to show the finite sample performance.
ISSN:0932-5026
1613-9798
DOI:10.1007/s00362-017-0970-0