On Robust Computation of Koopman Operator and Prediction in Random Dynamical Systems

In the paper, we consider the problem of robust approximation of transfer Koopman and Perron–Frobenius (P–F) operators from noisy time-series data. In most applications, the time-series data obtained from simulation or experiment are corrupted with either measurement or process noise or both. The ex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nonlinear science 2020-10, Vol.30 (5), p.2057-2090
Hauptverfasser: Sinha, Subhrajit, Huang, Bowen, Vaidya, Umesh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the paper, we consider the problem of robust approximation of transfer Koopman and Perron–Frobenius (P–F) operators from noisy time-series data. In most applications, the time-series data obtained from simulation or experiment are corrupted with either measurement or process noise or both. The existing results show the applicability of algorithms developed for the finite-dimensional approximation of the deterministic system to a random uncertain case. However, these results hold only in asymptotic and under the assumption of infinite data set. In practice, the data set is finite, and hence it is important to develop algorithms that explicitly account for the presence of uncertainty in data set. We propose a robust optimization-based framework for the robust approximation of the transfer operators, where the uncertainty in data set is treated as deterministic norm bounded uncertainty. The robust optimization leads to a min–max type optimization problem for the approximation of transfer operators. This robust optimization problem is shown to be equivalent to regularized least-square problem. This equivalence between robust optimization problem and regularized least-square problem allows us to comment on various interesting properties of the obtained solution using robust optimization. In particular, the robust optimization formulation captures inherent trade-offs between the quality of approximation and complexity of approximation. These trade-offs are necessary to balance for the proposed application of transfer operators, for the design of optimal predictor. Simulation results demonstrate that our proposed robust approximation algorithm performs better than some of the existing algorithms like extended dynamic mode decomposition (EDMD), subspace DMD, noise-corrected DMD, and total DMD for systems with process and measurement noise.
ISSN:0938-8974
1432-1467
DOI:10.1007/s00332-019-09597-6