Functional calculus and dilation for C0-groups of polynomial growth
Let U ( t )= e itB be a C 0 -group on a Banach space X . Let further satisfy ∑ n ∈ℤ ϕ (⋅− n )≡1. For α ≥0, we put which is a Banach algebra. It is shown that ∥ U ( t )∥≤ C (1+| t |) α for all t ∈ℝ if and only if the generator B has a bounded functional calculus, under some minimal hypotheses, which...
Gespeichert in:
Veröffentlicht in: | Semigroup forum 2012, Vol.84 (3), p.393-433 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
U
(
t
)=
e
itB
be a
C
0
-group on a Banach space
X
. Let further
satisfy ∑
n
∈ℤ
ϕ
(⋅−
n
)≡1. For
α
≥0, we put
which is a Banach algebra. It is shown that ∥
U
(
t
)∥≤
C
(1+|
t
|)
α
for all
t
∈ℝ if and only if the generator
B
has a bounded
functional calculus, under some minimal hypotheses, which exclude simple counterexamples. A third equivalent condition is that
U
(
t
) admits a dilation to a shift group on some space of functions ℝ→
X
. In the case
U
(
t
)=
A
it
with some sectorial operator
A
, we use this calculus to show optimal bounds for fractions of the semigroup generated by
A
, resolvent functions and variants of it. Finally, the
calculus is compared with Besov functional calculi as considered in Cowling et al. (J. Aust. Math. Soc., Ser. A, 60(1):51–89,
1996
) and Kriegler (Spectral multipliers,
R
-bounded homomorphisms, and analytic diffusion semigroups. PhD-thesis). |
---|---|
ISSN: | 0037-1912 1432-2137 |
DOI: | 10.1007/s00233-012-9393-3 |