Functional calculus and dilation for C0-groups of polynomial growth

Let U ( t )= e itB be a C 0 -group on a Banach space X . Let further satisfy ∑ n ∈ℤ ϕ (⋅− n )≡1. For α ≥0, we put which is a Banach algebra. It is shown that ∥ U ( t )∥≤ C (1+| t |) α for all t ∈ℝ if and only if the generator B has a bounded functional calculus, under some minimal hypotheses, which...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Semigroup forum 2012, Vol.84 (3), p.393-433
1. Verfasser: Kriegler, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let U ( t )= e itB be a C 0 -group on a Banach space X . Let further satisfy ∑ n ∈ℤ ϕ (⋅− n )≡1. For α ≥0, we put which is a Banach algebra. It is shown that ∥ U ( t )∥≤ C (1+| t |) α for all t ∈ℝ if and only if the generator B has a bounded functional calculus, under some minimal hypotheses, which exclude simple counterexamples. A third equivalent condition is that U ( t ) admits a dilation to a shift group on some space of functions ℝ→ X . In the case U ( t )= A it with some sectorial operator A , we use this calculus to show optimal bounds for fractions of the semigroup generated by A , resolvent functions and variants of it. Finally, the calculus is compared with Besov functional calculi as considered in Cowling et al. (J. Aust. Math. Soc., Ser. A, 60(1):51–89, 1996 ) and Kriegler (Spectral multipliers, R -bounded homomorphisms, and analytic diffusion semigroups. PhD-thesis).
ISSN:0037-1912
1432-2137
DOI:10.1007/s00233-012-9393-3