Smooth contractible threefolds with hyperbolic Gm-actions via polyhedral divisors
The aim of this note is to give an alternative proof of the Theorem 4.1 of Koras and Russell (J Algebr Geom 6(4): 671–695, 1997 ), that is, a characterization of smooth contractible affine varieties endowed with a hyperbolic action of the group G m ≃ C * , using the language of polyhedral divisors d...
Gespeichert in:
Veröffentlicht in: | Manuscripta mathematica 2018-07, Vol.156 (3-4), p.399-408 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The aim of this note is to give an alternative proof of the Theorem 4.1 of Koras and Russell (J Algebr Geom 6(4): 671–695,
1997
), that is, a characterization of smooth contractible affine varieties endowed with a hyperbolic action of the group
G
m
≃
C
*
, using the language of polyhedral divisors developed in Altmann and Hausen (Math Ann 334:557–607,
2006
) as generalization of
Q
-divisors. |
---|---|
ISSN: | 0025-2611 1432-1785 |
DOI: | 10.1007/s00229-017-0972-1 |