ℓ2 Bounded Variation and Absolutely Continuous Spectrum of Jacobi Matrices
We disprove a conjecture of Breuer–Last–Simon (Breuer et al. in Constr Approx 32(2):221–254, 2010 ) concerning the absolutely continuous spectrum of Jacobi matrices with coefficients that obey an ℓ 2 bounded variation condition with step q . We prove existence of a.c. spectrum on a smaller set than...
Gespeichert in:
Veröffentlicht in: | Communications in mathematical physics 2018, Vol.359 (1), p.101-119 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We disprove a conjecture of Breuer–Last–Simon (Breuer et al. in Constr Approx 32(2):221–254,
2010
) concerning the absolutely continuous spectrum of Jacobi matrices with coefficients that obey an ℓ
2
bounded variation condition with step
q
. We prove existence of a.c. spectrum on a smaller set than that specified by the conjecture and prove that our result is optimal. |
---|---|
ISSN: | 0010-3616 1432-0916 |
DOI: | 10.1007/s00220-017-3015-6 |