Isomonodromic Tau-Functions from Liouville Conformal Blocks

The goal of this note is to show that the Riemann–Hilbert problem to find multivalued analytic functions with SL ( 2 , C ) -valued monodromy on Riemann surfaces of genus zero with n punctures can be solved by taking suitable linear combinations of the conformal blocks of Liouville theory at c  = 1....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematical physics 2015-06, Vol.336 (2), p.671-694
Hauptverfasser: Iorgov, N., Lisovyy, O., Teschner, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The goal of this note is to show that the Riemann–Hilbert problem to find multivalued analytic functions with SL ( 2 , C ) -valued monodromy on Riemann surfaces of genus zero with n punctures can be solved by taking suitable linear combinations of the conformal blocks of Liouville theory at c  = 1. This implies a similar representation for the isomonodromic tau-function. In the case n  = 4 we thereby get a proof of the relation between tau-functions and conformal blocks discovered in Gamayun et al. (J High Energy Phys, 10:038, 2012 ). We briefly discuss a possible application of our results to the study of relations between certain N = 2 supersymmetric gauge theories and conformal field theory.
ISSN:0010-3616
1432-0916
DOI:10.1007/s00220-014-2245-0