Open Gromov-Witten Invariants of Toric Calabi-Yau 3-Folds

We present a proof of the mirror conjecture of Aganagic and Vafa (Mirror Symmetry, D-Branes and Counting Holomorphic Discs. http://arxiv.org/abs/hep-th/0012041v1 , 2000 ) and Aganagic et al. (Z Naturforsch A 57(1–2):128, 2002 ) on disk enumeration in toric Calabi-Yau 3-folds for all smooth semi-proj...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematical physics 2013-10, Vol.323 (1), p.285-328
Hauptverfasser: Fang, Bohan, Liu, Chiu-Chu Melissa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a proof of the mirror conjecture of Aganagic and Vafa (Mirror Symmetry, D-Branes and Counting Holomorphic Discs. http://arxiv.org/abs/hep-th/0012041v1 , 2000 ) and Aganagic et al. (Z Naturforsch A 57(1–2):128, 2002 ) on disk enumeration in toric Calabi-Yau 3-folds for all smooth semi-projective toric Calabi-Yau 3-folds. We consider both inner and outer branes, at arbitrary framing. In particular, we recover previous results on the conjecture for (i) an inner brane at zero framing in K P 2 (Graber-Zaslow, Contemp Math 310:107–121, 2002 ), (ii) an outer brane at arbitrary framing in the resolved conifold O P 1 ( - 1 ) ⊕ O P 1 ( - 1 ) (Zhou, Open string invariants and mirror curve of the resolved conifold. http://arxiv.org/abs/1001.0447v1 [math.AG], 2010 ), and (iii) an outer brane at zero framing in K P 2 (Brini, Open topological strings and integrable hierarchies: Remodeling the A-model. http://arxiv.org/abs/1102.0281 [hep-th], 2011 ).
ISSN:0010-3616
1432-0916
DOI:10.1007/s00220-013-1771-5