Quadratic Q-curves, units and Hecke L-values
We show that if K is a quadratic field, and if there exists a quadratic Q -curve E / K of prime degree N , satisfying weak conditions, then any unit u of O K satisfies a congruence u r ≡ 1 ( mod N ) , where r = g . c . d . ( N - 1 , 12 ) . If K is imaginary quadratic, we prove a congruence, modulo a...
Gespeichert in:
Veröffentlicht in: | Mathematische Zeitschrift 2015-08, Vol.280 (3-4), p.1015-1029 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that if
K
is a quadratic field, and if there exists a quadratic
Q
-curve
E
/
K
of prime degree
N
, satisfying weak conditions, then any unit
u
of
O
K
satisfies a congruence
u
r
≡
1
(
mod
N
)
, where
r
=
g
.
c
.
d
.
(
N
-
1
,
12
)
. If
K
is imaginary quadratic, we prove a congruence, modulo a divisor of
N
, between an algebraic Hecke character
ψ
~
and, roughly speaking, the elliptic curve. We show that this divisor then occurs in a critical value
L
(
ψ
~
,
2
)
, by constructing a non-zero element in a Selmer group and applying a theorem of Kato. |
---|---|
ISSN: | 0025-5874 1432-1823 |
DOI: | 10.1007/s00209-015-1463-2 |