Global solvability of the Cauchy problem for the Navier–Stokes equation in for some class of initial data

In this paper we prove the existence of regular solutions to the Navier–Stokes equations if the initial data v 0 have some finite weighted norm and supp v 0 belongs to , is a ball with radius R 0 , where R 0 is sufficiently large. The proof follows from appropriate estimates in weighted Sobolev spac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Zeitschrift 2008, Vol.260 (2), p.305-327
Hauptverfasser: Pileckas, K., Zaja̧czkowski, W. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we prove the existence of regular solutions to the Navier–Stokes equations if the initial data v 0 have some finite weighted norm and supp v 0 belongs to , is a ball with radius R 0 , where R 0 is sufficiently large. The proof follows from appropriate estimates in weighted Sobolev spaces.
ISSN:0025-5874
1432-1823
DOI:10.1007/s00209-007-0275-4