Global solvability of the Cauchy problem for the Navier–Stokes equation in for some class of initial data
In this paper we prove the existence of regular solutions to the Navier–Stokes equations if the initial data v 0 have some finite weighted norm and supp v 0 belongs to , is a ball with radius R 0 , where R 0 is sufficiently large. The proof follows from appropriate estimates in weighted Sobolev spac...
Gespeichert in:
Veröffentlicht in: | Mathematische Zeitschrift 2008, Vol.260 (2), p.305-327 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we prove the existence of regular solutions to the Navier–Stokes equations if the initial data
v
0
have some finite weighted norm and supp
v
0
belongs to
,
is a ball with radius
R
0
, where
R
0
is sufficiently large. The proof follows from appropriate estimates in weighted Sobolev spaces. |
---|---|
ISSN: | 0025-5874 1432-1823 |
DOI: | 10.1007/s00209-007-0275-4 |